The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Evaluation of approaches for modeling temperature wave propagation in district heating pipelines

Author

Summary, in English

The limitations of a pseudo-transient approach for modeling temperature wave propagation in district heating pipes were investigated by comparing numerical predictions with experimental data. The performance of two approaches, namely a pseudo-transient approach implemented in the finite element code ANSYS and a node method, was examined for a low turbulent Reynolds number regime and small velocity fluctuations. Both approaches are found to have limitations in predicting the temperature response time and predicting the peak values of the temperature wave, which is further hampered by the fact that the fluid is represented as an ideal fluid. The approaches failed to adequately predict the temperature wave propagation in the case of rapid inlet temperature changes. The overall conclusion from this case study was that in order to improve the prediction of the transient temperature, attention has to be given to the detailed modeling of the turbulent flow characteristics.

Department/s

Publishing year

2008

Language

English

Pages

45-56

Publication/Series

Heat Transfer Engineering

Volume

29

Issue

1

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1521-0537