The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of inclination angle of ribs on the flow behavior in rectangular ducts

Author

Summary, in English

The flow behavior in rib-roughened ducts is influenced by the inclination of ribs and the effect is investigated in the present study by Particle Image Velocimetry (PIV). The local flow structures between two adjacent ribs were measured. The Reynolds number was fixed at 5800. The flow field description was based on the PIV results in planes both parallel and perpendicular to the ribbed walls at various locations. The rib angle to the main flow direction was varied as 30 deg, 45 deg, 60 deg and 90 deg. The ribs induce three dimensional flow fields. The flow separation and reattachment between adjacent ribs are clearly observed. In addition, the inclined ribs are found to alter the spanwise distribution of the streamwise velocity component. The streamwise velocity component has its highest values at the upstream end of the ribs, and decreases continuously to its lowest values at the downstream end. Strong secondary flow motion occurs over the entire duct cross section for the inclined ribs. The flow structures between two consecutive ribs show that the fluid flows along the ribs from one end of the ribs to the other end, and then turns back at the transverse center Downwash and upwash flows are observed at the upstream end and downstream end of the ribs, respectively.

Department/s

Publishing year

2004

Language

English

Pages

692-699

Publication/Series

Journal of Fluids Engineering

Volume

126

Issue

4

Document type

Journal article

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0098-2202