The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The effect of changes in natural and anthropogenic deposition on modelling recovery from acidification.

Author

Summary, in English

The mufti-layer dynamic soil chemistry SAFE model was used to study the dynamics of recovery in the F1 catchment at Lake Gardsjon, Sweden. The influence of (F) sulphate adsorption, and (2) changes in marine deposition, oil model predictions of recovery was studied. Sulphate adsorption/desorption in SAFE is modeled by all isotherm in which sulphate adsorption is dependent oil both the sulphate concentration and the pH in the soil solution. This isotherm was parameterised for the B-horizon of F1 for the sulphate concentration range 10-260 mumol(-1) and the pH range 3.8-5.0. Sulphate adsorption/desorption as the only soil process involving sulphate is adequate to predict sulphate in run-off at F1. Adding the process caused time-delays in sulphate concentration in run-off of only 1-2 years. which was Much shorter than previously seen in the adjacent G1 catchment. The location of Lake Gardsjon. approximately 15 km inland from the Swedish west coast, ensures that the marine deposition to the area is high. Model Output showed that the temporal variation in marine deposition has a considerable impact oil the run-off-chemistry. Such changes in marine deposition are difficult to foresee and their influence on modelled run-off-chemistry, can be large when soils start to recover as the previously high concentrations of anthropogenic sulphate in the soil solution decrease.

Publishing year

2003

Language

English

Pages

766-776

Publication/Series

Hydrology and Earth System Sciences

Volume

7

Issue

5

Document type

Journal article

Publisher

European Geophysical Society

Topic

  • Chemical Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1607-7938