The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 1. n-nonyl-beta-D-glucoside

Author

Summary, in English

The influence of salt, temperature, and deuterium oxide on the self-aggregation of n-nonyl-beta-D-glucoside (beta-C(9)G(1)) in dilute solution has been investigated by static and dynamic light scattering, neutron scattering, and tensiometry. Scattering data show that the micelles can be described as relatively stiff, elongated structures with a circular cross section. With a decrease of temperature, the micelles grow in one dimension, which makes it surprising that the critical micelle concentration (cmc) shows a concomitant increase. On the other hand, substitution of D2O for H2O causes a large increase in micelle size at low temperatures, without any appreciable effect on cmc. With increasing temperature, the deuterium effect on the micelle size diminishes. The effects of salt on the micelle size and cmc were found to follow the Hofmeister series. Thus, at constant salt concentration, the micelle size decreased according to the sequence SO42- > Cl- > Br- > NO3- > I- > SCN-, whereas the effect on cmc displays the opposite trend. Here, I- and SCN- are salting-in anions. Similarly, the effects of cations decrease with increasing polarizability in the sequence Li-divided by > Na-divided by > K-divided by > Cs-divided by. At high ionic strength, the systems separate into two micellar phases. The results imply that the size of beta-C(9)G(1) micelles is extremely sensitive to changes in the headgroup size. More specifically, temperature and salt effects on effective headgroup size, including intermolecular interactions and water of hydration, are suggested to be more decisive for the micelle morphology than the corresponding effects on unimer solubility.

Department/s

Publishing year

2004

Language

English

Pages

1401-1408

Publication/Series

Langmuir

Volume

20

Issue

4

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463