The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Dietary fibre in fermented oat and barley beta-glucan rich concentrates

Author

Summary, in English

The ability of different lactic acid bacteria to influence the physicochemical characteristics (content, viscosity and molecular weight) of dietary fibre in beta-glucan-rich barley and oat concentrates was investigated. The cultures used were Lactobacillus acidophilus and the exopolysaccharide producing strain Pediococcus damnosus 2.6, together with the yoghurt culture, V2 (a mixture (1:1) of Lactobacillus delbrueckii subsp. bulgaricus and Streptocoecus salivarius subsp. thermophilus). Two methodologies, one including filtration and another centrifugation-dialysis, to quantify the dietary fibre, were compared. The centrifugation-dialysis method generally gave significantly (P < 0.05) higher values than the filtration method (for example, 79.8 g/100 g DW versus 59.6 g/100 g DW for the total fibre in the native barley fibre concentrate) with the exception of soluble barley fibres. The insoluble fibre content was found to decrease after fermentation (58.8 g/100 g DW to 39.0/37.0 g/100 g DW in barley and 26.0 g/100 g DW to 4.5/3.0 g/100 g DW in oats as analysed by the centrifugation-dialysis method). The soluble fibre in the barley fibre concentrate was apparently not affected by fermentation, while contents and maximum viscosities of the soluble fibre in oat fibre concentrates decreased after fermentation. However, the molecular weight was apparently not affected. (C) 2004 Elsevier Ltd. All rights reserved.

Publishing year

2005

Language

English

Pages

283-293

Publication/Series

Food Chemistry

Volume

89

Issue

2

Document type

Journal article

Publisher

Elsevier

Topic

  • Food Science

Keywords

  • molecular weight
  • viscosity
  • physicochemical characteristics
  • beta-glucans
  • dietary fibre
  • polysaccharides
  • oats
  • barley
  • fermentation
  • lactic acid bacteria
  • cereals

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-7072