The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The equilibrium structure of trans-glyoxal from experimental rotational constants and calculated vibration-rotation interaction constants

Author

  • René Wugt Larsen
  • F Pawlowski
  • F Hegelund
  • P Jorgensen
  • J Gauss
  • Bengt Nelander

Summary, in English

A total of six high-resolution FT-IR spectra for trans-glyoxal-d(2), trans-glyoxal-d(1) and trans-glyoxal-C-13(2) were recorded with a resolution ranging from 0.003 to 0.004 cm(-1). By means of a simultaneous ground state combination difference analysis for each of these isotopologues using the Watson Hamiltonian in A-reduction and I-r-representation the ground state rotational constants are obtained. An empirical equilibrium structure is determined for trans-glyoxal using these experimental ground state rotational constants and vibration - rotation interaction constants calculated at the CCSD(T)/cc-pVTZ level of theory. The least-squares fit yields the following structural parameters for trans-glyoxal: r(e)(C-C) = 1.51453(38) Angstrom, r(e)(C-H) = 1.10071(26) Angstrom, re(C= O) = 1.20450(27) Angstrom, alpha(e)(CCH) = 115.251(24) degrees, and alpha(e)(HCO) = 123.472(19)degrees in excellent agreement with theoretical predictions at the CCSD(T)/cc-pVQZ level of theory.

Publishing year

2003

Language

English

Pages

5031-5037

Publication/Series

Physical Chemistry Chemical Physics

Volume

5

Issue

22

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1463-9084