The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Feasibility Study on Measuring Selected Proteins in Malignant Melanoma Tissue by SRM Quantification.

Author

Summary, in English

Currently there are no clinically recognized molecular biomarkers for malignant melanoma (MM) for either diagnosing disease stage or measuring response to therapy. The aim of this feasibility study was to develop targeted selected reaction monitoring (SRM) assays for identifying candidate protein biomarkers in metastatic melanoma tissue lysate. In a pilot study applying the SRM assay, the tissue expression of nine selected proteins [complement 3 (C3), T-cell surface glycoprotein CD3 epsilon chain E (CD3E), dermatopontin, minichromosome maintenance complex component (MCM4), premelanosome protein (PMEL), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A13 (S100A13), transgelin-2 and S100B] was quantified in a small cohort of metastatic malignant melanoma patients. The SRM assay was developed using a TSQ Vantage triple quadrupole mass spectrometer that generated highly accurate peptide quantification. Repeated injection of internal standards spiked into matrix showed relative standard deviation (RSD) from 6% to 15%. All nine target proteins were identified in tumor lysate digests spiked with heavy peptide standards. The multiplex SRM peptide assay panel was then measured and quantified on a set of frozen MM tissue samples obtained from the Malignant Melanoma Biobank collected in Lund, Sweden. All nine proteins could be accurately quantified using the new SRM assay format. This study provides preliminary data on the heterogeneity of biomarker expression within MM patients. The S100B protein, which is clinically used as the pathology identifier of MM, was identified in 9 out of 10 MM tissue lysates. The use of the targeted SRM assay provides potential advancements in the diagnosis of MM that can aid in future assessments of disease in melanoma patients.

Department/s

Publishing year

2014

Language

English

Pages

1315-1326

Publication/Series

Journal of Proteome Research

Volume

13

Issue

3

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Surgery
  • Cancer and Oncology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1535-3893