The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Influence of Graphene on Charge Transfer between CoPc and Metals: The Role of Graphene-Substrate Coupling

Author

Summary, in English

The electronic structure of cobalt phthalocyanine (CoPc) on Pt(111), graphene/Pt(111), and Au-intercalated graphene/Ni(111) is investigated by photoexcited electron spectroscopies: photoemission (XPS and UPS) and X-ray absorption spectroscopy (XAS or NEXAFS). For CoPc on Pt(111), significant changes of the shape of XPS and XAS spectra indicate a charge transfer from the metal substrate to the Co ion of CoPc. The strong interaction between CoPc and Pt(111) can be completely prevented by the insertion of a graphene buffer layer. For CoPc on graphene/Ni(111), the charge transfer is only prevented if the graphene on Ni(111) is intercalated by gold. Therefore, the disturbance of the graphene electronic structure by the interaction with underlying substrate and the corresponding charge doping of graphene has been found to affect the electronic properties of adsorbed CoPc considerably.

Department/s

Publishing year

2015

Language

English

Pages

15240-15247

Publication/Series

Journal of Physical Chemistry C

Volume

119

Issue

27

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447