The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

On the off-design of a natural gas-fired combined cycle with CO2 capture

Author

Summary, in English

During the last 15 years cycles with CO, capture have been in focus, due to the growing concern over our climate. Often, a natural gas fired combined cycle with a chemical absorption plant for CO, capture from the flue gases have been used as a reference in comparisons between cycles. Neither the integration of the steam production for regeneration of amines in the combined cycle nor the off-design behaviour of such a plant has been extensively Studied before. In this paper, the integration of steam production for regeneration of the amines is modelled at design load and studied in off-design conditions for a combined cycle. Different ambient conditions and part-load strategies and their influence on the cycle performance are also examined. Of particular interest is a novel strategy with the possibility of longer life of gas turbine blading, with marginal loss in efficiency. The off-design performance of the combined cycle is modelled in a rigorous Way using a gas turbine performance deck, while the boiler is calculated using simplified correlations for oft-design heat transfer and pressure drop. The steam turbine calculation is based on verified models for the flow-pressure-efficiency relations, whilst the steam condenser is based oil the HEI method.

Publishing year

2007

Language

English

Pages

353-359

Publication/Series

Energy

Volume

32

Issue

4

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Engineering

Keywords

  • off-design
  • CO2 capture
  • combined cycles

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-6785