The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate)

Author

Summary, in English

Solid polymer electrolyte membranes were prepared as semi-interpenetrating networks by photo-induced polymerization of mixtures of poly(ethylene glycol) (PEG) methacrylate macromonomers in the presence of poly(methyl methacrylate) (PMMA) and lithium bis(trifluoromethanesulfonyl)imide salt. The composition of the membranes was varied with respect to the PMMA content, the degree of cross-linking, and the salt concentration. Infrared analysis of the membranes indicated that the lithium ions were coordinated by the PEG side chains. Calorimetry results showed a single glass transition for the blend membranes. However, dynamic mechanical measurements, as well as a closer analysis of the calorimetry data, revealed that the blends were heterogeneous systems. The ionic conductivity of the membranes increased with the content of PEG-grafted polymethacrylate, and was found to exceed 10-5 S cm−1 at 30 °C for membranes containing more than 85 wt.% of this component in the polymer blend.

Publishing year

2006

Language

English

Pages

573-579

Publication/Series

Solid State Ionics

Volume

177

Issue

5-6

Document type

Journal article

Publisher

Elsevier

Topic

  • Chemical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0167-2738