The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Toluene diisocyanate: Induction of the autotaxin-lysophosphatidic acid axis and its association with airways symptoms.

Author

Summary, in English

Diisocyanates are industrial chemicals which have a wide range of applications in developed and developing countries. They are notorious lung toxicants and respiratory sensitizers. However, the mechanisms behind their adverse effects are not adequately characterized. Autotaxin (ATX) is an enzyme producing lysophosphatidic acid (LPA), and the ATX-LPA axis has been implicated in lung related inflammatory conditions and diseases, including allergic asthma, but not to toxicity of environmental low-molecular-weight chemicals. We investigated effects of toluene diisocyanate (TDI) on ATX induction in human lung epithelial cell models, and we correlated LPA-levels in plasma to biomarkers of TDI exposure in urine collected from workers exposed to <5ppb (parts per billion). Information on workers' symptoms was collected through interviews. One nanomolar TDI robustly induced ATX release within 10min in vitro. A P2X7- and P2X4-dependent microvesicle formation was implicated in a rapid ATX release and a subsequent protein synthesis. Co-localization between purinergic receptors and ATX was documented by immunofluorescence and confocal microscopy. The release was modulated by monocyte chemoattractant protein-1 (MCP-1) and by extracellular ATP. In workers, we found a dose-response relationship between TDI exposure biomarkers in urine and LPA levels in plasma. Among symptomatic workers reporting "sneezing", the LPA levels were higher than among non-symptomatic workers. This is the first report indicating induction of the ATX-LPA axis by an environmental low-molecular-weight chemical, and our data suggest a role for the ATX-LPA axis in TDI toxicity.

Publishing year

2015

Language

English

Pages

222-231

Publication/Series

Toxicology and Applied Pharmacology

Volume

287

Issue

3

Document type

Journal article

Publisher

Academic Press

Topic

  • Environmental Health and Occupational Health

Status

Published

ISBN/ISSN/Other

  • ISSN: 1096-0333