The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

System analysis of a multifunctional PV/T hybrid solar window

Author

Summary, in English

Abstract in Undetermined
The work presented in this article aims to investigate a PV/T hybrid solar window on a system level. A PV/T hybrid is an absorber on which solar cells have been laminated. The solar window is a PV/T hybrid collector with tiltable insulated reflectors integrated into a window. It simultaneously replaces thermal collectors, PV-modules and sunshade. The building integration lowers the total price of the construction since the collector utilizes the frame and the glazing in the window. When it is placed in the window a complex interaction takes place. On the positive side is the reduction of the thermal losses due to the insulated reflectors. On the negative side is the blocking of solar radiation that would otherwise heat the building passively. This limits the performance of the solar window since a photon can only be used once. To investigate the sum of such complex interaction a system analysis has to be performed. In this paper results are presented from such a system analysis showing both benefits and problems with the product. The building system with individual solar energy components, i.e. solar collector and PV modules, of the same size as the solar window, uses 1100 kW h less auxiliary energy than the system with a solar window. However, the solar window system uses 600 kW h less auxiliary energy than a system with no solar collector.

Publishing year

2012

Language

English

Pages

903-910

Publication/Series

Solar Energy

Volume

86

Issue

3

Document type

Journal article

Publisher

Elsevier

Topic

  • Building Technologies

Keywords

  • * Building integration
  • * PV/T hybrid
  • Solar window
  • * TRNSYS

Status

Published

Research group

  • Energy and Building Design

ISBN/ISSN/Other

  • ISSN: 0038-092X