The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Various phosphodiesterase subtypes mediate the in vivo antilipolytic effect of insulin on adipose tissue and skeletal muscle in man

Author

Summary, in English

The antilipolytic effect of insulin on human abdominal subcutaneous adipose tissue and skeletal muscle during local inhibition of cAMP-phosphodiesterases (PDEs) was investigated in vivo, by combining microdialysis with a euglycaemic, hyperinsulinaemic clamp. During hyperinsulinaemia, the glycerol concentration decreased by 40% in fat and by 33% in muscle. Addition of the selective PDE3-inhibitor amrinone abolished the insulin-induced decrease in adipose glycerol concentration, but did not influence the glycerol concentration in skeletal muscle. Nor did the PDE4-selective inhibitor rolipram or the PDE5-selective inhibitor dipyridamole influence the insulin-induced decrease in muscle tissue glycerol. However, the non-selective PDE-inhibitor theophylline counteracted the antilipolytic action of insulin at both sites. The specific activity of PDEs was also determined in both tissues. PDE3-activity was 36.8+/-6.4 pmol x min(-1) x mg(-1) in adipose tissue and 3.9+/-0.5 pmol x min(-1) x mg(-1) in muscle. PDE4-activity in skeletal muscle was high, i.e., 60.7+/-10.2 pmol x min(-1) x mg(-1) but 8.5 pmol x min(-1) x mg(-1) or less in adipose tissue. In conclusion, insulin inhibits lipolysis in adipose tissue and skeletal muscle by activation of different PDEs, suggesting a unique metabolic role of muscle lipolysis.

Publishing year

1998

Language

English

Pages

560-568

Publication/Series

Diabetologia

Volume

41

Issue

5

Document type

Journal article

Publisher

Springer

Topic

  • Endocrinology and Diabetes

Keywords

  • Microdialysis
  • glycerol
  • interstitial flow
  • phosphodiesterase inhibitors

Status

Published

Research group

  • Insulin Signal Transduction

ISBN/ISSN/Other

  • ISSN: 1432-0428