The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Enterostatin deficiency increases serum cholesterol but does not influence growth and food intake in mice

Author

Summary, in English

Miller R, D'Agostino D, Erlanson-Albertsson C, Lowe ME. Enterostatin deficiency increases serum cholesterol but does not influence growth and food intake in mice. Am J Physiol Endocrinol Metab 297: E856-E865, 2009. First published July 21, 2009; doi:10.1152/ajpendo.91008.2008.-A pentapeptide released from procolipase, enterostatin, selectively attenuates dietary fat intake when administered peripherally or centrally. Enterostatin may act through the afferent vagus nerve and in the hypothalamus and amygdala, primarily in the central nucleus of the amygdala. To investigate the physiological role of endogenous enterostatin, we created an enterostatin-deficient, colipase-sufficient (Ent(-/-)) mouse. Ent(-/-) mice are viable, normally active, and fertile. They exhibit normal growth on low-fat and high-fat diets. Furthermore, Ent(-/-) mice develop diet-induced obesity, as do Ent(-/-) mice, and have normal responses to a two-macronutrient choice diet and to a switch from a high-fat to a low-fat diet. Levels of total serum (P = 0.004) and non-HDL (P = 0.001) cholesterol were higher and levels of HDL cholesterol (P = 0.01) were lower in Ent(-/-) than in wild-type mice. To determine whether enterostatin contributed to the decreased survival or whether colipase deficiency was the sole contributor, we administered enterostatin to procolipase-deficient (Clps(-/-)) mouse pups. Enterostatin significantly improved survival (P <= 0.001). Our results demonstrate that enterostatin is not critically required to regulate food intake or growth, suggesting that other pathways may compensate for the loss of enterostatin. Enterostatin has developmental effects on survival of newborns and alters cholesterol metabolism.

Publishing year

2009

Language

English

Pages

856-865

Publication/Series

American Journal of Physiology: Endocrinology and Metabolism

Volume

297

Issue

4

Document type

Journal article

Publisher

American Physiological Society

Topic

  • Physiology

Keywords

  • appetite regulation
  • fat intake
  • procolipase
  • satiety

Status

Published

Research group

  • Appetite Regulation

ISBN/ISSN/Other

  • ISSN: 1522-1555