The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Differential changes in the association and dissociation rate constants for binding of cystatins to target proteinases occurring on N-terminal truncation of the inhibitors indicate that the interaction mechanism varies with different enzymes

Author

Summary, in English

The importance of the N-terminal region of human cystatin C or chicken cystatin for the kinetics of interactions of the inhibitors with four cysteine proteinases was characterized. The association rate constants for the binding of recombinant human cystatin C to papain, ficin, actinidin and recombinant rat cathepsin B were 1.1 x 10(7), 7.0 x 10(6), 2.4 x 10(6) and 1.4 x 10(6) M-1.s-1, whereas the corresponding dissociation rate constants were 1.3 x 10(-7), 9.2 x 10(-6), 4.6 x 10(-2) and 3.5 x 10(-4) s-1. N-Terminal truncation of the first ten residues of the inhibitor negligibly affected the association rate constant with papain or ficin, but increased the dissociation rate constant approx. 3 x 10(4)- to 2 x 10(6)-fold. In contrast, such truncation decreased the association rate constant with cathepsin B approx. 60-fold, while minimally affecting the dissociation rate constant. With actinidin, the truncated cystatin C had both an approx. 15-fold lower association rate constant and an approx. 15-fold higher dissociation rate constant than the intact inhibitor. Similar results were obtained for intact and N-terminally truncated chicken cystatin. The decreased affinity of human cystatin C or chicken cystatin for cysteine proteinases after removal of the N-terminal region is thus due to either a decreased association rate constant or an increased dissociation rate constant, or both, depending on the enzyme. This behaviour indicates that the contribution of the N-terminal segment of the two inhibitors to the interaction mechanism varies with the target proteinase as a result of structural differences in the active-site region of the enzyme.

Publishing year

1994

Language

English

Pages

219-225

Publication/Series

Biochemical Journal

Volume

299

Document type

Journal article

Publisher

Portland Press

Topic

  • Biochemistry and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0264-6021