The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Modeling and Control of a 1.45 m deformable mirror

Author

Summary, in English

The eagerness among astronomers to gain deeper knowledge and further understanding of the universe around us sets requirements for future telescopes.Images of more distant stars with higher spatial resolution is desired. Extremely Large Telescopes (ELTs) are being developed for this purpose. An example is a European collaboration that is developing an ELT called the Euro50. To obtain the desired resolution, disturbances that affect the incoming light need to be compensated for. This compensation is achieved by a constant reshaping of the secondary mirror in the telescope. The mirror reshaping is performed by force actuators that need to be controlled at a high bandwidth. The purpose of this Master Thesis is to derive a control law for a 1.45 m deformable mirror. The control strategy for this control law should be applicable and implementable in the secondary mirror of Euro50. The proposed control system strategy consists of actuator state feedback controllers of PD type and local observers that estimate the required states for the feedback. This Master Thesis has been made in a joint collaboration between Lund Observatory at Lund University and the Department of Automatic Control at Lund Institute of Technology.

Publishing year

2006

Language

English

Publication/Series

MSc Theses

Document type

Student publication for professional degree (Master's level)

Topic

  • Technology and Engineering

Report number

TFRT-5775

Supervisor

  • N/A

ISBN/ISSN/Other

  • ISSN: 0280-5316