The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Design of a Single AAV Vector for Coexpression of TH and GCH1 to Establish Continuous DOPA Synthesis in a Rat Model of Parkinson's Disease.

Author

Summary, in English

Preclinical efficacy of continuous delivery of 3,4-dihydroxyphenylalanine (DOPA) with adeno-associated viral (AAV) vectors has recently been documented in animal models of Parkinson's disease (PD). So far, all studies have utilized a mix of two monocistronic vectors expressing either of the two genes, tyrosine hydroxylase (TH) and GTP cyclohydrolase-1 (GCH1), needed for DOPA production. Here, we present a novel vector design that enables efficient DOPA production from a single AAV vector in rats with complete unilateral dopamine (DA) lesions. Functional efficacy was assessed with drug-induced and spontaneous motor behavioral tests where vector-treated animals showed near complete and stable recovery within 1 month. Recovery of motor function was associated with restoration of extracellular DA levels as assessed by online microdialysis. Histological analysis showed robust transgene expression not only in the striatum but also in overlying cortical areas. In globus pallidus, we noted loss of NeuN staining, which might be due to different sensitivity in neuronal populations to transgene expression. Taken together, we present a single AAV vector design that result in efficient DOPA production and wide-spread transduction. This is a favorable starting point for continued translation toward a therapeutic application, although future studies need to carefully review target region, vector spread and dilution with this approach.

Topic

  • Medical Genetics

Status

Published

Research group

  • Brain Repair and Imaging in Neural Systems (BRAINS)
  • Molecular Neuromodulation

ISBN/ISSN/Other

  • ISSN: 1525-0024