The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A direct numerical simulation study of interface propagation in homogeneous turbulence

Author

Summary, in English

A 3D direct numerical simulation (DNS) study of the evolution of a self-propagating interface in forced constant-density statistically stationary homogeneous isotropic turbulence was performed by solving Navier–Stokes and level-set equations under a wide range of conditions that cover various (from 0.1 to 2.0) ratios of the interface speed SL to the r.m.s. turbulent velocity U′ and various (50, 100 and 200) turbulent Reynolds numbers Re. By analysing computed data, the following issues were addressed: (i) dependence of the speed and thickness of the fully developed statistically planar mean front that envelops the interface on U′/SL and Re, (ii) dependence of the fully developed mean turbulent flux of a scalar c that characterizes the state of the fluid (c=0 and 1 ahead and behind the interface respectively) on U′/SL and Re, (iii) evolution of the mean front speed, its thickness, and the mean scalar flux during the front development after embedding a planar interface into the forced turbulence and (iv) relation between canonical and conditioned moments of the velocity, velocity gradient and pressure gradient fields.

Department/s

Publishing year

2015

Language

English

Pages

127-164

Publication/Series

Journal of Fluid Mechanics

Volume

772

Issue

June

Document type

Journal article

Publisher

Cambridge University Press

Topic

  • Fluid Mechanics and Acoustics

Keywords

  • turbulent reacting flows
  • intermittency
  • flames

Status

Published

ISBN/ISSN/Other

  • ISSN: 0022-1120