The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The Flow Rate of People during Train Evacuation in Rail Tunnels: Effects of Different Train Exit Configurations

Author

Summary, in English

An exploratory study of a train evacuation inside a tunnel was performed in order to study the effects of different train exit configurations on the flow rate of people through the exit. A total of 84 participants in the ages 18–40 years took part in the experiment, which was carried out on two separate days and involved 18 evacuation scenarios. The statistical analysis of the experiment demonstrated that the aver- age flow rate capacity of the train exit was .3 persons per second and meter (p/s m) door width, including all scenarios. Four variables related to the train exit configuration were identified to significantly affect the flow rate of people: (1) a reduction of the train exit height increased the flow rate of people with on average .026 p/s m; (2) a change of tunnel floor material from concrete to macadam increased the flow rate of people with on average .015 p/s m; (3) an emergency ladder present in the train exit reduced the flow rate of people with on average .064 p/s m; and (4) a complete failure of the lighting inside the train reduced the flow rate of people with on average .029 p/s m. In addition, qualitative observations revealed a deferential behaviour among the participants in the train, caused by the people outside the train. It is therefore believed that the population density outside the train will significantly determine the flow rate capacity of the train exit during an evacuation.

Publishing year

2014

Language

English

Pages

515-529

Publication/Series

Safety Science

Volume

62

Document type

Journal article

Publisher

Elsevier

Topic

  • Building Technologies

Keywords

  • Evacuation experiment
  • Flow rate of people
  • Train
  • Tunnel
  • Underground rail transportation system

Status

Published

Research group

  • Evacuation

ISBN/ISSN/Other

  • ISSN: 0925-7535