The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

High resolution polarization spectroscopy and laser induced fluorescence of CO2 around 2 mu m

Author

Summary, in English

High resolution Infrared Polarisation Spectroscopy (IRPS) and Infrared Laser Induced Fluorescence (IRLIF) techniques were used to probe CO2/N-2 binary gas mixture at atmospheric pressure and ambient temperature. The probed CO2 molecules were prepared by laser excitation to an overtone and combination ro-vibrational state (12(0)1, J = 15) of CO2, centred at 4988.6612 cm(-1). IRPS and IRLIF line profiles were recorded for several CO2/N-2 binary mixtures. The observed IRLIF line shapes have the expected Lorentzian form while the observed IRPS line shapes are narrower by a factor of two than those recorded with the IRLIF and appear to have a Lorentzian-cubed profile. The recorded line profiles provide measurements of the pressure-broadening coefficient directly at atmospheric pressure. The Full-Width-Half-Maxima (FWHM) pressure broadening coefficients are measured, based on IRLIF, to be 0.2174 0.0092 cm(-1) atm(-1) and 0.1327 +/- 0.0077 cm(-1) atm(-1) for self- and N-2 collision broadening, respectively. The broadening coefficients obtained based on IRPS were measured to be similar to 8% larger than those obtained with IRLIF.

Department/s

Publishing year

2007

Language

English

Pages

41-47

Publication/Series

European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics

Volume

42

Issue

1

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6060