The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Mechanisms of Whole Chromosome Gains in Tumors - Many Answers to a Simple Question.

Author

Summary, in English

Whole chromosome gain is the most common type of gross genomic abnormality observed in human tumors. It is particularly frequent in lympho-haematopoietic and embryonic neoplasms, where trisomies and tetrasomies are typically present together with few or no other cytogenetic imbalances, resulting in hyperdiploid chromosome numbers. Despite the high prevalence of whole chromosome gains in neoplastic cells, their mechanism of origin remains disputed. Here, 4 potential models for the generation of whole chromosome gains are reviewed: (1) loss of chromosomes from the tetraploid level, (2) sequential sister chromatid non-disjunction, (3) multipolar mitosis coupled to sister chromatid non-disjunction, and (4) multipolar mitosis coupled to incomplete cytokinesis. Each of these mechanisms may in theory result in the generation of hyperdiploid neoplastic clones, but none of them were single-handedly able to reproduce the scenario of chromosome copy number alterations in tumors when cell populations resulting from these models were simulated in silico and compared to published cytogenetic data. To develop models for the generation of whole chromosome gains further, it is critical to improve our knowledge of the principles of clonal selection in tumors and of the baseline rate of chromosome segregation errors in human cells. To illustrate this, a model combining multipolar mitosis coupled to incomplete cytokinesis with a low rate of baseline sister chromatid non-disjunction was shown readily to reproduce copy number distributions in hyperdiploid karyotypes from human tumors.

Department/s

Publishing year

2011

Language

English

Pages

190-201

Publication/Series

Cytogenetic and Genome Research

Volume

133

Document type

Journal article

Publisher

Karger

Topic

  • Medical Genetics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1424-859X