The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

3,4-Diarylmaleimides-a novel class of kinase inhibitors-effectively induce apoptosis in FLT3-ITD-dependent cells

Author

  • Florian H. Heidel
  • Thomas S. Mack
  • Elena Razumovskaya
  • Marie-Christine Blum
  • Daniel B. Lipka
  • Anne Ballaschk
  • Jan-Peter Kramb
  • Stanislav Plutizki
  • Lars Rönnstrand
  • Gerd Dannhardt
  • Thomas Fischer

Summary, in English

FLT3 kinase has become an attractive drug target in AML with up to 30% of cases harboring internal-tandem-duplication (ITD) mutations. For these, conferring a worse prognosis and decreased overall survival, several FLT3 tyrosine kinase inhibitors (TKIs) are currently being tested in clinical trials. However, when using these drugs as monotherapy, the problem of short duration of remissions and high incidence of TKI resistance has emerged. Here, we investigated two members of a novel class of tyrosine kinase inhibitors, 3,4-diarylmaleimides, for their efficacy on mutated FLT3 kinase. These compounds inhibit FLT3 kinase in an ATP-competitive manner and effectively inhibit phosphorylation of downstream targets. 3,4-Diarylmaleimides (DHF125 and 150) induce apoptosis in FLT3-ITD-dependent cells lines and patient blasts at low micromolar concentrations. They are retained in the cytoplasm of exposed cells for more than 24 h and synergize with chemotherapy and midostaurin. Both 3,4-diarylmaleimides show inhbition of FLT3-ITD-related kinase autophosphorylation at distinct tyrosine residues when compared to midostaurin. In conclusion, this novel group of compounds shows differential inhibition patterns with regard to FLT3 kinase and displays a promising profile for further clinical development. Currently, experiments evaluating toxicity in murine models and unraveling the exact binding mechanism are under way to facilitate a potential clinical application.

Department/s

Publishing year

2012

Language

English

Pages

331-344

Publication/Series

Annals of Hematology

Volume

91

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Hematology

Keywords

  • AML
  • FLT3
  • Tyrosine kinase inhibitor
  • Tyrosine phosphorylation

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-0584