The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of hybrid nanofluid mixture in plate heat exchangers

Author

Summary, in English

Heat transfer and pressure drop characteristics of a hybrid nanofluid mixture containing alumina nanoparticles and multi-walled carbon nanotubes (MWCNTs) were experimentally investigated in a chevron corrugated-plate heat exchanger. A MWCNT/water nanofluid with a volume concentration of 0.0111% and an Al2O3/water nanofluid with a volume concentration of 1.89% were mixed at a volume ratio of 1:2.5. A small amount of MWCNTs was added in order to increase the mixture thermal conductivity. Experiments with water used as both hot and cold fluids were carried out first to obtain a heat transfer correlation for fluids flowing in the chevron plate heat exchanger. The results of the nanofluid mixture were compared with those of the Al2O3/water nanofluid and water. Results show that the heat transfer coefficient of the hybrid nanofluid mixture is slightly larger than that of the Al2O3/water nanofluid and water, when comparison is based on the same flow velocity. The hybrid nanofluid mixture also exhibits the highest heat transfer coefficient at a given pumping power. The pressure drop of the hybrid nanofluid mixture is smaller than that of the Al2O3/water nanofluid and only slightly higher than that of water. Therefore, hybrid nanofluid mixtures might be promising in many heat transfer applications.

Publishing year

2016

Language

English

Pages

190-196

Publication/Series

Experimental Thermal and Fluid Science

Volume

72

Document type

Journal article

Publisher

Elsevier

Topic

  • Nano Technology
  • Energy Engineering

Status

Published

Research group

  • heat transfer

ISBN/ISSN/Other

  • ISSN: 1879-2286