The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste

Author

Summary, in English

The effect of bioaugmentation with an anaerobic lipolytic bacterial strain on the anaerobic digestion of restaurant lipid-rich waste was studied in batch experiments with a model waste containing 10% lipids (triolein) under two sets of experimental conditions: (A) methanogenic conditions, and (B) initially acidogenic conditions in the presence of only the lipolytic strain biomass (4 days), followed by methanogenic conditions. The bioaugmenting lipolytic strain, Clostridium lundense (DSM 17049(T)), was isolated from bovine rumen. The highest lipolytic activity was detected at the beginning of the experiments. A higher methane production rate, 27.7 cm(3) CH4(STP) g(-1) VSadded day(-1) (VS, volatile solids) was observed in experiment A with the presence of the bioaugmenting lipolytic strain under methanogenic conditions. The highest initial oleate concentration, 99% of the total oleate contained in the substrate, was observed in the experiments with the bioaugmenting lipolytic strain under treatment A conditions; the levels of palmitate and stearate were also higher until day 15, indicating that the bioaugmentation strategy improved the hydrolysis of the lipid fraction. In general, the results indicated that degradation of the long chain fatty acids (LCFAs) controlled the digestion process. (c) 2006 Society of Chemical Industry.

Publishing year

2006

Language

English

Pages

1745-1752

Publication/Series

Journal of Chemical Technology and Biotechnology

Volume

81

Issue

11

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Industrial Biotechnology

Keywords

  • bioaugmentation
  • biological anaerobic treatment
  • hydrolysis
  • inhibition
  • LCFA
  • lipid-rich waste

Status

Published

ISBN/ISSN/Other

  • ISSN: 0268-2575