The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Cutting Tool Fracture Prediction and Strength Evaluation by Stress Identification Part I: Stress Model

Author

Summary, in English

Cutting tool premature failure, caused by tool fracture and chipping, is a frequent problem in the metal cutting area. For a certain type of cutting tool, correctly identifying its load profile and property profile is very crucial for prediction of the tool premature failure. The most direct way to evaluate the load profile and property profile of a cutting tool is to identify the stress working on it. This paper presents a new method for identification of the maximum principal stress and maximum effective stress subjected to a cutting tool in a cutting process. The method consists of four steps: estimation of the contact load on the tool faces, calculation of the maximum related stresses with the FEM, modelling of maximum related stresses with an artificial neural network and, finally, identification of the maximum principal stress, σe, and maximum effective stress, σe, with the use of measured cutting forces or cutting parameters. The calculation of the contact load on the tool face is based on a simplification of the load distribution on the tool face. Part I of the paper will present this method and Part II will present the results of experimental studies.

Publishing year

1997

Language

English

Pages

1691-1714

Publication/Series

International Journal of Machine Tools & Manufacture

Volume

37

Issue

12

Document type

Journal article

Publisher

Elsevier

Topic

  • Materials Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0890-6955