The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Efficient modeling of sun/shade canopy radiation dynamics explicitly accounting for scattering

Author

  • Per Bodin
  • Oskar Franklin

Summary, in English

Abstract in Undetermined
The separation of global radiation (Rg) into its direct (Rb) and diffuse constituents (Rg) is important when modeling plant photosynthesis because a high Rd:Rg ratio has been shown to enhance Gross Primary Production (GPP). To include this effect in vegetation models, the plant canopy must be separated into sunlit and shaded leaves. However, because such models are often too intractable and computationally expensive for theoretical or large scale studies, simpler sun-shade approaches are often preferred. A widely used and computationally efficient sun-shade model was developed by Goudriaan (1977) (GOU). However, compared to more complex models, this model's realism is limited by its lack of explicit treatment of radiation scattering.

Here we present a new model based on the GOU model, but which in contrast explicitly simulates radiation scattering by sunlit leaves and the absorption of this radiation by the canopy layers above and below (2-stream approach). Compared to the GOU model our model predicts significantly different profiles of scattered radiation that are in better agreement with measured profiles of downwelling diffuse radiation. With respect to these data our model's performance is equal to a more complex and much slower iterative radiation model while maintaining the simplicity and computational efficiency of the GOU model.

Publishing year

2012

Language

English

Pages

535-541

Publication/Series

Geoscientific Model Development

Volume

5

Issue

2

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1991-959X