The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Decomplexing biofluids using microchip based acoustophoresis

Author

Summary, in English

Highly efficient washing and extraction of microbeads to decomplex analytes ranging from small peptides to large viruses was realised in a microscaled continuous flow format. The bead washing principle reported herein is based on acoustophoresis, i.e. the primary acoustic radiation force in an ultrasonic standing wave and laminar flow properties are utilised to translate bioanalytes trapped on functionalised microbeads from one carrier fluid to another. The carry-over of non-specific material ranges from 1 to 50 ppm relative to input levels depending on application, making acoustophoresis suitable for extraction of rare species from complex environments. Selective extraction of a phosphopeptide relative to its unphosphorylated counterpart is demonstrated using metal oxide affinity capture (MOAC) beads and MALDI-TOF MS readout. Acoustophoresis of microbeads activated with specific binders could be used to capture phage viral particles. The efficiency of the acoustophoretic washing principle was demonstrated by an unspecific phage cross contamination level of only 10(-6) of that in the input bead/phage mixture. The continuous flow format makes acoustophoretic washing flexible regarding sample volume and also allows for easy integration into a sequence of particle handling and analytical unit operations.

Publishing year

2009

Language

English

Pages

810-818

Publication/Series

Lab on a Chip

Volume

9

Issue

6

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Medical Engineering
  • Immunology in the medical area

Status

Published

ISBN/ISSN/Other

  • ISSN: 1473-0189