The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The influence of non-dissipative quantities in kinematic hardening plasticity

Author

Summary, in English

A kinematic hardening plasticity model valid for finite strains is presented. The model is based on the well-known multiplicative split of the deformation gradient into elastic and plastic parts. The basic ingredient in the formulation is the introduction of a locally defined configuration-a centre configuration-which is associated with a deformation gradient that is used to characterize the kinematic hardening behaviour. The non-dissipative quantities allowed in the model are found when the plastic and kinematic hardening evolution laws are split into two parts: a dissipative part, which is restricted by the dissipation inequality, and a non-dissipative part, which can be chosen without any thermodynamic considerations. To investigate the predictive capabilities of the proposed kinematic hardening formulation, necking of a bar is considered. Moreover, to show the influence of the non-dissipative quantities, the simple shear problem and torsion of a thin-walled cylinder are considered. The numerical examples reveal that the non-dissipative quantities can affect the response to a large extent and are consequently valuable and important ingredients in the formulation when representing real material behaviour.

Department/s

Publishing year

2004

Language

English

Pages

615-622

Publication/Series

Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science

Volume

218

Issue

6

Document type

Journal article

Publisher

Professional Engineering Publishing

Topic

  • Mechanical Engineering

Keywords

  • kinematic hardening
  • large strains
  • multiplicative split

Status

Published

ISBN/ISSN/Other

  • ISSN: 0954-4062