The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat.

Author

  • Hanna Iderberg
  • A C McCreary
  • M A Varney
  • M S Kleven
  • W Koek
  • L Bardin
  • R Depoortère
  • Angela Cenci Nilsson
  • A Newman-Tancredi

Summary, in English

L-DOPA is the gold-standard treatment for Parkinson's disease (PD), but induces troublesome dyskinesia after prolonged treatment. This is associated with the 'false neurotransmitter' conversion of L-DOPA to dopamine by serotonin neurons projecting from the raphe to the dorsal striatum. Reducing their activity by targeting pre-synaptic 5-HT1A receptors should thus be an attractive therapeutic strategy, but previous 5-HT1A agonists have yielded disappointing results. Here, we describe the activity of a novel, highly selective and potent 5-HT1A agonist, NLX-112 (also known as befiradol or F13640) in rat models relevant to PD and its associated affective disorders. NLX-112 (0.16mg/kgi.p.) potently and completely reversed haloperidol-induced catalepsy in intact rats and abolished L-DOPA-induced Abnormal Involuntary Movements (AIMs) in hemiparkinsonian rats, an effect that was reversed by the selective 5-HT1A antagonist, WAY100635. In microdialysis experiments, NLX-112 profoundly decreased striatal 5-HT extracellular levels, indicative of inhibition of serotonergic function. NLX-112 also blunted the L-DOPA-induced surge in dopamine levels on the lesioned side of the brain, an action that likely underlies its anti-dyskinetic effects. NLX-112 (0.16mg/kgi.p.) robustly induced rotations in hemiparkinsonian rats, suggesting that it has a motor facilitatory effect. Rotations were abolished by WAY100635 and were ipsilateral to the lesioned side, suggesting a predominant stimulation of the dopamine system on the non-lesioned side of the brain. NLX-112 also efficaciously reduced immobility time in the forced swim test (75% reduction at 0.16mg/kgi.p.) and eliminated stress-induced ultrasonic vocalization at 0.08mg/kgi.p., effects consistent with potential antidepressant- and anxiolytic-like properties. In other tests, NLX-112 (0.01-0.16mg/kgi.p.) did not impair the abilityof L-DOPA to rescue fore-paw akinesia in the cylinder test but decreased rotarod performance, probably due to induction of flat body posture and fore-paw treading which are typical of 5-HT1A agonists upon acute administration. However, upon repeated administration of NLX-112 (0.63mg/kgi.p., twice a day), flat body posture and fore-paw treading subsided within 4days of treatment. Taken together, these observations suggest that NLX-112 could exhibit a novel therapeutic profile, combining robust anti-dyskinetic properties without impairing the therapeutic properties of L-DOPA, and with additional beneficial effects on non-motor (affective) symptoms.

Publishing year

2015

Language

English

Pages

335-350

Publication/Series

Experimental Neurology

Volume

271

Issue

May 30

Document type

Journal article

Publisher

Elsevier

Topic

  • Neurology

Status

Published

Research group

  • Basal Ganglia Pathophysiology

ISBN/ISSN/Other

  • ISSN: 0014-4886