The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Monocytes regulate systemic coagulation and inflammation in abdominal sepsis.

Author

Summary, in English

Abdominal sepsis is associated with significant changes in systemic inflammation and coagulation. The purpose of this study was to examine the role of peripheral blood monocytes for systemic coagulation, including thrombin generation and consumption of coagulation factors. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in C57BL/6 mice. Plasma and lung levels of interleukin-6 (IL-6), CXC chemokines (CXCL1, CXCL2 and CXCL5) as well as pulmonary activity of myeloperoxidase (MPO), thrombin generation and coagulation factors were determined 6h after CLP induction. Administration of clodronate liposomes decreased circulating levels of monocytes by 96%. Time to peak thrombin formation was increased and peak and total thrombin generation was decreased in plasma from CLP animals. Monocyte depletion decreased time to peak formation of thrombin and increased peak and total generation of thrombin in septic animals. In addition, monocyte depletion decreased the CLP-induced increase in the levels of thrombin-antithrombin complexes in plasma. Depletion of monocytes increased plasma levels of prothrombin, factor V, factor X, protein C and in septic mice. Moreover, depletion of monocytes decreased CLP-induced levels of IL-6 and CXC chemokines in plasma and lung by more than 59% and 20%, respectively. CLP-induced MPO activity in the lung was attenuated by 44% in animals depleted of monocytes. Taken together, our findings show for the first time that peripheral blood monocytes regulates systemic coagulation and improve our understanding of the pathophysiology of sepsis and encourage further attempts to target innate immune cell functions in abdominal sepsis.

Publishing year

2015

Language

English

Pages

540-547

Publication/Series

American Journal of Physiology: Heart and Circulatory Physiology

Volume

308

Issue

5

Document type

Journal article

Publisher

American Physiological Society

Topic

  • Physiology

Status

Published

Research group

  • Surgery
  • Clinical Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1522-1539