The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering.

Author

Summary, in English

Glutaraldehyde (GA) reacts with amino groups in proteins, forming intermolecular cross-links that, at sufficiently high protein concentration, can transform a protein solution into a gel. Although GA has been used as a cross-linking reagent for decades, neither the cross-linking chemistry nor the microstructure of the resulting protein gel have been clearly established. Here we use small-angle X-ray scattering (SAXS) to characterise the microstructure and structural kinetics of gels formed by cross-linking of pancreatic trypsin inhibitor, myoglobin or intestinal fatty acid-binding protein. By comparing the scattering from gels and dilute solutions, we extract the structure factor and the pair correlation function of the gels. The protein gels are spatially heterogeneous, with dense clusters linked by sparse networks. Within the clusters, adjacent protein molecules are almost in contact, but the protein concentration in the cluster is much lower than in a crystal. At the ∼1 nm SAXS resolution, the native protein structure is unaffected by cross-linking. The cluster radius is in the range 10-50 nm, with the cluster size determined mainly by the availability of lysine amino groups on the protein surface. The development of structure in the gel, on time scales from minutes to hours, appears to obey first-order kinetics. Cross-linking is slower at acidic pH, where the population of amino groups in the reactive deprotonated form is low. These results support the use of cross-linked protein gels in NMR studies of protein dynamics and for modeling NMR relaxation in biological tissue.

Publishing year

2014

Language

English

Pages

4002-4011

Publication/Series

Physical Chemistry Chemical Physics

Volume

16

Issue

9

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Physical Sciences
  • Physical Chemistry
  • Natural Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1463-9084