The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Environmental systems analysis of biogas systems - Part 1: Fuel-cycle emissions

Author

Summary, in English

Fuel-cycle emissions of carbon dioxide (CO2) carbon oxide (CO), nitrogen oxides (NOx), sulphur dioxide (SO2), hydrocarbons (HC), methane (CH4), and particles are analysed from a life-cycle perspective for different biogas systems based oil six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and enduse technology being studied in order to be able to produce reliable and accurate data oil fuel-cycle emission. (c) 2005 Elsevier Ltd. All rights reserved.

Publishing year

2006

Language

English

Pages

469-485

Publication/Series

Biomass & Bioenergy

Volume

30

Issue

5

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Systems

Keywords

  • environmental systems analysis
  • emissions
  • fuel-cycle
  • anaerobic digestion
  • biogas
  • biogas production systems

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-2909