The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Functional role of the MrpA- and MrpD-homologous protein subunits in enzyme complexes evolutionary related to respiratory chain complex I.

Author

  • Vamsi Moparthi
  • Brijesh Kumar
  • Yusra Al-Eryani
  • Eva Sperling
  • Kamil Gorecki
  • Torbjörn Drakenberg
  • Cecilia Hägerhäll

Summary, in English

NADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD. In complex I, these ion transporter protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Using a model system, consisting of Bacillus subtilis MrpA and MrpD deletion strains and a low copy expression plasmid, it was recently demonstrated that NuoN can rescue the strain deleted for MrpD but not that deleted for MrpA, whereas the opposite tendency was seen for NuoL. This demonstrated that the MrpA-type and MrpD-type proteins have unique functional specializations. In this work, the corresponding antiporter-like protein subunits from the smaller enzymes evolutionarily related to complex I were tested in the same model system. The subunits from 11-subunit complex I from Bacillus cereus behaved essentially as those from full size complex I, corroborating that this enzyme should be regarded as a bona fide complex I. The hydrogenase-3 and hydrogenase-4 antiporter-like proteins on the other hand, could substitute equally well for MrpA or MrpD at pH7.4, suggesting that these enzymes have intermediate forms of the antiporter-like proteins, which seemingly lack the functional specificity.

Publishing year

2014

Language

English

Pages

178-185

Publication/Series

Biochimica et Biophysica Acta - Bioenergetics

Volume

1837

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0005-2728