The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Extensive physiological integration in Carex arenaria and Carex disticha in relation to potassium and water availability

Author

Summary, in English

Physiological integration between ramets is beneficial when acquiring heterogeneously distributed resources, and is hypothesized to occur when the benefits of resource sharing outweigh the costs. Our aim was to investigate if resource availability affected physiological integration in Carex arenaria and Carex disticha. Ramet systems were grown in high potassium and high water (K+ W+), high K and low water (K+ W-), or low K and high water (K- W+) for 1 month. Thereafter, water and K transport were traced with erythrosin and rubidium, respectively. Carex arenaria and C. disticha transported erythrosin over seven ramet generations and rubidium throughout the whole ramet system, but C. arenaria exported 20% more rubidium from the labelled shoot than C. disticha. A detailed analysis of subset of plants suggested that C. disticha in low K abundance shared more rubidium than in high K abundance, and that C. arenaria ramets in both K+ W- and K- W+ shared more resources than K+ W+ ramets. We demonstrated long-distance resource transport for K and water in C. arenaria and C. disticha. The distance of integration was not affected by resource availability in C. arenaria or C. disticha, but local concentrations of K showed marked and contrasting responses to nutrient and water treatment in both species.

Publishing year

2002

Language

English

Pages

469-477

Publication/Series

New Phytologist

Volume

156

Issue

3

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Ecology

Keywords

  • tracers
  • extensive integrators
  • rubidium
  • potassium
  • erythrosin
  • clonal plants

Status

Published

Research group

  • Soil Ecology

ISBN/ISSN/Other

  • ISSN: 1469-8137