The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Gel electrolyte membranes derived from co-continuous polymer blends

Author

Summary, in English

Polymer gel electrolyte membranes were prepared by first casting films of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, and poly(ethylene glycol) (PEG) monomethacrylate and dimethacrylate macromonomers. Polymerization of the macromonomers initiated by UV-irradiation then generated solid films having phase-separated morphologies with a microporous PVDF-HFP phase embedded in PEG-grafted polymethacrylates. Gel electrolyte membranes were finally prepared by allowing the films to take up solutions of LiTFSI in gamma-butyrolactone (gamma-BL). The PEG-grafted polymethacrylate in the membranes was found to host the largest part of the liquid electrolyte, giving rise to a highly swollen ionic conductive phase. Results by FTIR spectroscopy showed that the Li+ ions preferentially interacted with the ether oxygens of the PEG chains. The properties of the membranes were studied as a function of the ratio of PVDF-HFP to PEG-grafted polymethacrylate, as well as the degree of crosslinking, LiTFSI concentration, and liquid electrolyte content. The self-supporting and elastic gel membranes had ionic conductivities of 10(-3) S cm(-1) and a mechanical storage modulus in the range of 2.5 MPa in the tension mode at room temperature. Variation of the salt concentration showed the greatest effect on the membrane properties.

Publishing year

2005

Language

English

Pages

7896-7908

Publication/Series

Polymer

Volume

46

Issue

19

Document type

Journal article

Publisher

Elsevier

Topic

  • Chemical Sciences

Keywords

  • Polymer gel electrolytes
  • Interpenetrating polymer blend networks
  • Vinylidene fluoride copolymers

Status

Published

ISBN/ISSN/Other

  • ISSN: 0032-3861