The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Seasonal streamflow forecast: a GCM multi-model downscaling approach

Author

Summary, in English

This work investigates the predictability of seasonal to inter-annual streamflow over several river basins in Norway through the use of multi-model ensembles. As general circulation models (GCMs) do not explicitly simulate streamflow, a statistical link is made between GCM-forecast fields generated in December and average streamflow in the melting season May-June. By using the Climate Predictability Tool (CPT) three models were constructed and from these a multi-model was built. The multi-model forecast is tested against climatology to determine the quality of the forecast. Results from the forecasts show that the multi-model performs better than the individual models and that this method shows improved forecast skills if compared to previous studies conducted in the same basins. The highest forecast skills are found for basins located in the southwest of Norway. The physical interpretation for this is that stations on the windward side of the Scandinavian mountains are exposed to the prevailing winds from the Atlantic Ocean, a principal source of predictive information from the atmosphere on this timescale.

Publishing year

2010

Language

English

Pages

503-507

Publication/Series

Hydrology Research

Volume

41

Issue

6

Document type

Journal article

Publisher

IWA Publishing

Topic

  • Water Engineering

Keywords

  • downscaling
  • canonical correlation analysis
  • climate predictability tool
  • general circulation model

Status

Published

ISBN/ISSN/Other

  • ISSN: 1998-9563