The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The mechanisms controlling heat and mass transfer on frying of beefburgers. Part 2: The influence of the pan temperature and patty diameter

Author

Summary, in English

The effects of varying pan temperature and meat patty diameter on heat (temperature at the centre (5 mm) and 2 mm below the surface) and mass transfer (total, water and fat loss) of beefburgers prepared by double-sided frying were studied, The porosity of the fried beefburgers was determined based on the volume shrinkage and density measurements. The thawing time measured at the centre of the beefburger, total frying time and the final temperature 2mm below the surface were significantly influenced by pan temperature, whereas the choice of meat raw material was of less importance than the pan temperature for the heat transfer. The characteristics of heat transfer, i.e. thawing and total frying time, were significantly influenced by the original patty diameter, with faster temperature increase in the smaller beefburgers. The most determinant factor for the water flux is the temperature gradient, and for the fat flux. the fat content. The water loss based on the initial water content in the form of drip was about 80% of the water loss even at a pan temperature of 175 degrees C. This means that the pressure-driven water loss is the main mechanism governing the water loss in the frying of beefburgers. The higher the heat penetration by using beefburgers of the smaller diameter and the higher the cooking temperature that induces higher water losses, the faster is the crust formation, which ill turn results ill less shrinkage and higher porosity of the heat-processed meat. When beefburgers of different diameters were studied the porosity was dependent both on the rate of heat transfer and on the amount of water and fat flux and was higher with increasing water and fat flux.

Department/s

  • Department of Food Technology, Engineering and Nutrition

Publishing year

2005

Language

English

Pages

18-27

Publication/Series

Journal of Food Engineering

Volume

71

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Food Engineering

Keywords

  • Heat and mass transfer
  • Beefburger
  • Frying
  • Porosity
  • Contraction

Status

Published

ISBN/ISSN/Other

  • ISSN: 0260-8774