The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Treatment with the sphingosine-1-phosphate analogue FTY 720 reduces loss of plasma volume during experimental sepsis in the rat.

Author

Summary, in English

BACKGROUND: Increased vascular leakage leading to hypovolaemia and tissue oedema is common in severe sepsis. Hypovolaemia together with oedema formation may contribute to hypoxia and result in multiorgan failure and death. To improve treatment during sepsis, a potential therapeutic target may be to reduce the vascular leakage. Substances affecting the endothelial barrier are interesting in this respect, as it is suggested that increase in vascular leakage depends on reorganisation of the endothelial cells and breakdown of the endothelial barrier. The agonist of the bioactive lipid sphingosine-1-phosphate, FTY720, has been shown to modulate the integrity of the endothelium and reduce permeability both in vitro and in vivo. The aim of the present study was to determine if FTY720 could reduce the loss of plasma volume during experimental sepsis in rats. METHODS: Sepsis was induced by ligation and incision of the caecum in the rat. Plasma volume was determined before and 4.5 h after induction of sepsis by a dilution technique using (125) I-labelled albumin. RESULTS: FTY720 in a dose of 0.2 mg/kg reduced the loss of plasma during sepsis by approximately 30% compared with vehicle, without any adverse effects on haemodynamic and physiological parameters. The increase in hematocrit and haemoglobin concentration was also found to be higher in the vehicle group. CONCLUSION: FTY720 in a dose without haemodynamic side effects reduces loss of plasma volume during experimental sepsis most likely because of reduction in permeability and may therefore be beneficial in sepsis.

Publishing year

2013

Language

English

Pages

713-718

Publication/Series

Acta Anaesthesiologica Scandinavica

Volume

57

Issue

6

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Anesthesiology and Intensive Care

Status

Published

ISBN/ISSN/Other

  • ISSN: 0001-5172