The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The minimal structure and motion problems with missing data for 1D retina vision

Author

Summary, in English

In this paper we investigate the structure and motion problem for calibrated one-dimensional projections of a two-dimensional environment. The theory of one-dimensional cameras are useful in several areas, e.g. within robotics, autonomous guided vehicles, projection of lines in ordinary vision and vision of vehicles undergoing so called planar motion. In a previous paper the structure and motion problem for all cases with non-missing data was classified and solved. Our aim is here to classify all structure and motion problems, even those with missing data, and to solve them. In the classification we introduce the notion of a prime problem. A prime problem is a minimal problem that does not contain a minimal problem as a sub-problem. We further show that there are infinitely many such prime problems. We give solutions to four prime problems, and using the duality of Carlsson these can be extended to solutions of seven prime problems. Finally we give some experimental results based on synthetic data.

Publishing year

2006

Language

English

Pages

327-343

Publication/Series

Journal of Mathematical Imaging and Vision

Volume

26

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Mathematics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0924-9907