The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Differential Transduction Following Basal Ganglia Administration of Distinct Pseudotyped AAV Capsid Serotypes in Nonhuman Primates

Author

Summary, in English

We examined the transduction efficiency of different adeno-associated virus (AAV) capsid serotypes encoding for green fluorescent protein (GFP) flanked by AAV2 inverted terminal repeats in the nonhuman primate basal ganglia as a prelude to translational studies, as well as clinical trials in patients with Parkinson's disease (PD). Six intact young adult cynomolgus monkeys received a single 10 mu l injection of AAV2/1-GFP, AAV2/5-GFP, or AAV2/8-GFP pseudotyped vectors into the caudate nucleus and putamen bilaterally in a pattern that resulted in each capsid serotype being injected into at least four striatal sites. GFP immunohistochemistry revealed excellent transduction rates for each AAV pseudotype. Stereological estimates of GFP(+) cells within the striatum revealed that AAV2/5-GFP transduces significantly higher number of cells than AAV2/8-GFP (P < 0.05) and there was no significant difference between AAV2/5-GFP and AAV2/1-GFP (P = 0.348). Consistent with this result, Cavalieri estimates revealed that AAV2/5-GFP resulted in a significantly larger transduction volume than AAV2/8-GFP (P < 0.05). Each pseudotype transduced striatal neurons effectively [>95% GFP(+) cells colocalized neuron-specific nuclear protein (NeuN)]. The current data suggest that AAV2/5 and AAV2/1 are superior to AAV2/8 for gene delivery to the nonhuman primate striatum and therefore better candidates for therapeutic applications targeting this structure.

Topic

  • Medical Genetics

Status

Published

Research group

  • Molecular Neuromodulation
  • Brain Repair and Imaging in Neural Systems (BRAINS)

ISBN/ISSN/Other

  • ISSN: 1525-0024