The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Microbial dustiness and particle release of different biofuels

Author

Summary, in English

Exposure to organic dust originating from biofuels can cause adverse health effects. In the present study we have assessed the dustiness in terms of microbial components and particles of various biofuels by using a rotating drum as a dust generator. Microbial components from straw, wood chips, wood pellets and wood briquettes were quantified by several methods. Excellent correllations (r greater than or equal to 0.85, P < 0.0001) were found: between lipopolysaccharide (LPS) (as determined by 3-hydroxy fatty acid analysis) and endotoxin (as determined by a Limulus test), cultivable bacteria, total number of bacteria and muramic acid; between endotoxin and cultivable bacteria, total number of bacteria and muramic acid; between total number of bacteria and muramic acid; between cultivable fungi and total number of fungi. Straw was dustier than the other biofuels in terms of actinomycetes, bacteria, muramic acid, endotoxin, LPS, particle mass and number of particles. One of the wood chips studied and the straws had comparatively high dustiness In terms of fungi, while both wood pellets and wood briquettes had comparatively low dustiness in terms of all microbial components. An initially high particle generation rate of straw and wood chips decreased over time whereas the particle generation rate of wood briquettes and wood pellets increased during a 5 min rotation period. Particles of non-microbial origin may be the determining factor for the health risk in handling briquettes and pellets. Straw dust contained significantly more microorganisms per particle than did wood chip dust, probably because bacteria were most abundant in straw dust. The concentrations of endotoxin and fungi were high in wood and straw dust; dust from one of the straws contained 3610 EU/mg and dust from one of the chips contained 7.3 x 10(6) fungal spores/mg. An exposure to 3 mg of straw or wood chips dust/m(3) (the Swedish and Danish OEL of unspecific inhalable dust) could cause exposures to endotoxin and fungi higher than levels were health symptoms are seen to develop. The very different levels of dustiness in terms of particles and microbial components of different biofuels shows that dustiness is an important health-relevant factor to consider when choosing among biofuels and when designing worksites for handling of biofuels.

Publishing year

2004

Language

English

Pages

327-338

Publication/Series

Annals of Occupational Hygiene

Volume

48

Issue

4

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Environmental Health and Occupational Health

Keywords

  • c.f.u.
  • bacteria
  • dustiness test
  • endotoxin
  • fungi
  • LPS
  • occupational health
  • muramic acid
  • particles
  • straw
  • wood chips

Status

Published

ISBN/ISSN/Other

  • ISSN: 1475-3162