The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects Of Ribs On Internal Blade-Tip Cooling

Author

Summary, in English

This work concerns an experimental study of pressure drop and heat transfer for turbulent flow inside a U-duct with relevance for tip cooling of gas turbine blades. The U-duct models the internal blade cooling flow passages. Both friction factors and convective heat transfer coefficients were measured along the bend (turn) part of the U-duct for three different rib configuration cases, namely (a) single rib at three different rib positions, i.e., inlet, middle and outlet, (b) two ribs with three different configurations, i.e., at the inlet and middle, at the middle and outlet as well as at the inlet and outlet, and (c) three ribs. The rib height-to-hydraulic diameter ratio, e/Dh, was 0.1 and the pitch ratios were 10 and 20. The Reynolds number was varied from 8,000 to 20,000. The test rig has been built in such a way that various experimental setups can be handled as the bend (turn) part of the U-duct can easily be removed and the rib configurations can be changed. The surface temperature was measured by using a high-resolution measurement technique based on narrow band thermochromic liquid crystals (TLC R35C5W) and a CCD camera placed facing the bend (turn) part of the U-duct. The calibration of the TLC is based on the hue-based color decomposition system using an in-house designed calibration box. Both the friction factor and heat transfer coefficient were affected by the position and configuration of the ribs along the bend wall. The highest friction factor was found for two ribs placed at the middle and outlet positions of the bend wall, respectively. The highest heat transfer coefficient was found for two ribs placed at the inlet and middle positions of the bend wall, respectively. The uncertainties in the experiments were estimated to be 3% and 6% for the Nusselt number and friction factor, respectively.

Department/s

Publishing year

2012

Language

English

Pages

1033-1041

Publication/Series

ASME Conference Proceedings

Document type

Conference paper

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Energy Engineering

Conference name

ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition

Conference date

2011-06-06 - 2011-06-10

Conference place

Vancouver, Canada

Status

Published

Research group

  • heat transfer

ISBN/ISSN/Other

  • ISBN: 978-0-7918-5465-5
  • Paper no. GT2011-45118