The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3)

Author

  • R He
  • N Komas
  • Dag Ekholm
  • T Murata
  • M Taira
  • S Hockman
  • Eva Degerman
  • V C Manganiello

Summary, in English

cDNAs encoding two PDE-3 or cyclic GMP-inhibited (cGI) cyclic nucleotide phosphodiesterase (PDE) isoforms, RPDE-3B (RcGIP1) and HPDE-3A (HcGIP2), were cloned from rat (R) adipose tissue and human (H) heart cDNA libraries. Deletion and N- and C-terminal truncation mutants were expressed in Escherichia coli in order to define their catalytic core. Active mutants of both RPDE-3B and HPDE-3A included the domain conserved among all PDEs plus additional upstream and downstream sequences. An RPDE-3B mutant consisting of the conserved domain alone and one from which the RPDE-3B 44-amino acid insertion was deleted exhibited little or no activity. All active recombinants exhibited a high affinity (< 1 microM) for cyclic AMP (cAMP) and cyclic GMP (cGMP), were inhibited by cAMP, cGMP, and cilostamide, but not by rolipram, and were photolabeled with [32P]-cGMP. The IC50 values for cGMP inhibition of cAMP hydrolysis were lower for HPDE-3A than for RPDE-3B recombinants. The deduced amino acid sequences of HPDE-3A and RPDE-3B catalytic domains are very similar except for the 44-amino acid insertion not found in other PDEs. It is possible that this insertion may not only distinguish PDE-3 catalytic domains from other PDEs and identify catalytic domains of PDE-3 subfamilies or conserved members of the PDE-3 gene family, but may also be involved in the regulation of sensitivity of PDE-3s to cGMP.

Publishing year

1998

Language

English

Pages

89-111

Publication/Series

Cell Biochemistry and Biophysics

Volume

29

Issue

1-2

Document type

Journal article

Publisher

Humana Press

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Insulin Signal Transduction

ISBN/ISSN/Other

  • ISSN: 1085-9195