The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands.

Author

Summary, in English

The EWSR1 gene is known to play a crucial role in the development of a number of different bone and soft tissue tumours, notably Ewing's sarcoma. POU5F1 is expressed during early development to maintain the totipotent status of embryonic stem and germ cells. In the present study, we report the fusion of EWSR1 and POU5F1 in two types of epithelial tumours: hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. This finding not only broadens considerably the spectrum of neoplasms associated with EWSR1 fusion genes but also strengthens the evidence for shared pathogenetic mechanisms in the development of adnexal and salivary gland tumours. Reminiscent of the previously reported fusion genes involving EWSR1, the identified transcript is predicted to encode a chimeric protein consisting of the EWSR1 amino-terminal domain and the POU5F1 carboxy-terminal domain. We assessed the transcriptional activation potential of the chimera compared to the wild-type proteins, as well as activation of transcription through the oct/sox composite element known to bind POU5F1. Among other POU5F1 target genes, this element is present in the promoter of NANOG and in the distal enhancer of POU5F1 itself. Our results show that although the chimera is capable of significant transcriptional activation, it may in fact convey a negative regulatory effect on target genes. Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Publishing year

2008

Language

English

Pages

78-86

Publication/Series

Journal of Pathology

Volume

215

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Medical Genetics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0022-3417