The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The STAT3 Inhibitor Galiellalactone Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse Model of Prostate Cancer.

Author

Summary, in English

Signal transducer and activator of transcription 3 (STAT3) is known to be involved in the progression of prostate cancer (PCa) and is a key factor in drug resistance and tumor immunoescape. As a result, it represents a promising target for PCa therapy. We studied the effects of the STAT3 inhibitor galiellalactone (GL) on tumor growth and metastatic spread in vitro and in vivo. The effect of GL on cell viability, apoptosis, and invasion was studied in vitro using androgen-independent DU145 and DU145-Luc cell lines. For in vivo studies, mice were injected orthotopically with DU145-Luc cells and treated with daily intraperitoneal injections of GL for 6 wk. GL significantly reduced the growth of the primary tumor and the metastatic spread of PCa cells to regional and distal lymph nodes in vivo. Treatment with GL also resulted in decreased cell proliferation and increased apoptosis compared with controls. In vitro, GL reduces the viability and invasive abilities of DU145-Luc cells and induces apoptosis. Our results showed that tumor growth and early metastatic dissemination of PCa can be significantly reduced by GL, indicating its potential use as a therapeutic compound in advanced metastatic PCa.

Department/s

Publishing year

2016

Language

English

Pages

400-404

Publication/Series

European Urology

Volume

69

Issue

3

Document type

Journal article

Publisher

Elsevier

Topic

  • Urology and Nephrology

Status

Published

Research group

  • Urological cancer, Malmö
  • Experimental Pathology, Malmö

ISBN/ISSN/Other

  • ISSN: 1873-7560