The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

CD11b(+)Ly6C(++)Ly6G(-) cells show distinct function in mice with chronic inflammation or tumor burden

Author

Summary, in English

Background: S100A9 has been shown to be important for the function of so called Myeloid Derived Suppressor Cells (MDSC). Cells with a similar phenotype are also involved in pro-inflammatory processes, and we therefore wanted to investigate the gene expression and function of these cells in animals that were either subjected to chronic inflammation, or inoculated with tumors. Methods: CD11b(+)Ly6C(++) and Ly6G(+) cells were isolated from spleen, tumor tissue or inflammatory granulomas. S100A9, Arginase 1 and iNOS gene expression in the various CD11b(+) cell populations was analyzed using Q-PCR. The suppressive activity of the CD11b(+) cell populations from different donors was studied in co-culture experiments. Results: S100A9 was shown to be expressed mainly in splenic CD11b(+)Ly6C(+)G(+) cells both at the RNA and protein level. Arginase I and iNOS expression could be detected in both CD11b(+)Ly6C(+)Ly6G(+) and CD11b(+)Ly6C(+)G(-)/C(++)G(-) derived from tumors or a site of chronic inflammation, but was very low in the same cell populations isolated from the spleen. CD11b(+) cells isolated from mice with peritoneal chronic inflammation were able to stimulate T lymphocytes, while CD11b(+) cells from mice with peritoneal tumors suppressed T cell growth. Conclusion: An identical CD11b(+)Ly6C(++)G(-) cell population appears to have the ability to adopt immune stimulatory or immune suppressive functions dependent on the presence of a local inflammatory or tumor microenvironment. Thus, there is a functional plasticity in the CD11b(+)Ly6C(++)G(-) cell population that cannot be distinguished with the current molecular markers.

Department/s

  • Immunology

Publishing year

2012

Language

English

Publication/Series

BMC Immunology

Volume

13

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Immunology in the medical area

Keywords

  • Tumor
  • Inflammation
  • Myeloid cells
  • T cells
  • Suppression

Status

Published

Research group

  • Immunology

ISBN/ISSN/Other

  • ISSN: 1471-2172