The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The nuclear localization of γ-tubulin is regulated by SadB-mediated phosphorylation.

Author

Summary, in English

γ-tubulin is an important cell division regulator that arranges microtubule assembly and mitotic spindle formation. Cytosolic γ-tubulin nucleates α- and β-tubulin in a growing microtubule by forming the ring-shaped protein complex γTuRC. Nuclear γ-tubulin also regulates S-phase progression by moderating the activities of E2Fs. The mechanism that regulates localization of γ-tubulin is currently unknown. Here, we describe that the human Ser/Thr kinase SadB short localizes to chromatin and centrosomes. We found that SadB-mediated phosphorylation of γ-tubulin on Ser 385 triggered formation of chromatin associated γ-tubulin complexes that moderates gene expression. In this way, the C terminal region of γ-tubulin regulates S-phase progression. In addition, chromatin levels of γ-tubulin were decreased by reduction of SadB levels or expression of a non-phosphorylatable Ala-385-γ-tubulin, but were enhanced by expression of SadB, wild-type γ-tubulin, or a phosphomimetic Asp-385-γ-tubulin mutant. Our results demonstrate that SadB kinases regulate the cellular localization of γ-tubulin and thereby control S-phase progression.

Department/s

Publishing year

2014

Language

English

Pages

21360-21373

Publication/Series

Journal of Biological Chemistry

Volume

289

Issue

31

Document type

Journal article

Publisher

American Society for Biochemistry and Molecular Biology

Topic

  • Cancer and Oncology
  • Hematology

Status

Published

Research group

  • Molecular Pathology, Malmö

ISBN/ISSN/Other

  • ISSN: 1083-351X