The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Advances in understanding l-DOPA-induced dyskinesia.

Author

Summary, in English

The crucial role of dopamine (DA) in movement control is illustrated by the spectrum of motor disorders caused by either a deficiency or a hyperactivity of dopaminergic transmission in the basal ganglia. The degeneration of nigrostriatal DA neurons in Parkinson's disease causes poverty and slowness of movement. These symptoms are greatly improved by pharmacological DA replacement with l-3,4-dihydroxy-phenylalanine (l-DOPA), which however causes excessive involuntary movements in a majority of patients. l-DOPA-induced dyskinesia (abnormal involuntary movements) provides a topic of investigation at the interface between clinical and basic neuroscience. In this article, we review recent studies in rodent models, which have uncovered two principal alterations at the basis of the movement disorder, namely, an abnormal pre-synaptic handling of exogenous l-DOPA, and a hyper-reactive post-synaptic response to DA. Dysregulated nigrostriatal DA transmission causes secondary alterations in a variety of non-dopaminergic transmitter systems, the manipulation of which modulates dyskinesia through mechanisms that are presently unclear. Further research on l-DOPA-induced dyskinesia will contribute to a deeper understanding of the functional interplay between neurotransmitters and neuromodulators in the motor circuits of the basal ganglia.

Publishing year

2007

Language

English

Pages

665-671

Publication/Series

Current Opinion in Neurobiology

Volume

17

Issue

6

Document type

Journal article

Publisher

Elsevier

Topic

  • Neurosciences

Status

Published

Research group

  • Basal Ganglia Pathophysiology

ISBN/ISSN/Other

  • ISSN: 1873-6882