The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Computation of combined turbulent convective and impingement heat transfer

Author

Summary, in English

Impingement and forced convection are preferable methods for cooling gas turbine components. However, influences of various design parameters like crossflow and surface enlargements (like ribs) are not well understood. Thus there is a request for reliable and cost effective computational prediction methods, due to the experimental difficulties. such methods could be based on the numerical solution of the Reynolds-averaged Navier-Stokes equations, the energy equation and models for the turbulence field. This paper describes some recent advances and efforts to develop and validate computational methods for simulations of impingement and forced convection cooling in generic geometries of relevance in gas turbine cooling. Single unconfined round air jets, confined jets with crossflow, and three-dimensional ribbed ducts are considered. The numerical approach is nased on the finite volume method and uses a co-located computational grid. The considered turbulence models are all the so-called low Reynolds number models. Our recent investigations show that linear and non-linear two-equations turbulence models can be used for impinging jet heat transfer predictions with reasonable success. However, the computational results also suggest that an application of a realizability constraint is necessary to avoid over-prediction of the stagnation point heat transfer coefficients. For situations with combined forced convection, and impingement cooling is reduced. In addition, inline V-shaped 45degrees ribs pointing upstream performed superior compared to those pointing downstream and transverse ribs.

Department/s

Publishing year

2004

Language

English

Pages

116-133

Publication/Series

International Journal of Numerical Methods for Heat & Fluid Flow

Volume

14

Issue

1

Document type

Journal article

Publisher

Emerald Group Publishing Limited

Topic

  • Energy Engineering

Keywords

  • turbulence
  • cooling
  • force measurement
  • convection
  • methods
  • finite volume

Status

Published

ISBN/ISSN/Other

  • ISSN: 1758-6585