The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Software-based optimal PID design with robustness and noise sensitivity constraints

Author

Summary, in English

Even though PID control has been available for a long time, there are still no tuning methods including derivative action that have gained wide acceptance in industry. Also, there is still no general consensus for when one should use PID, PI or even I control on a process. The focus of this article is to present a new method for optimal PID control design that automatically picks the best controller type for the process at hand. The proposed PID design procedure uses a software-based method to find controllers with optimal or near optimal load disturbance response subject to robustness and noise sensitivity constraints. It is shown that the optimal controller type depends on maximum allowed noise sensitivity as well as process dynamics. The design procedure thus results in a set of PID, PI and I controllers with different noise filters that the user can switch between to reach an acceptable control signal activity. The software is also used to compare PI and PID control performance with equivalent noise sensitivity and robustness over a large batch of processes representative for the process industry. This can be used to show how much a particular process benefits from using the derivative part.

Publishing year

2015

Language

English

Pages

90-101

Publication/Series

Journal of Process Control

Volume

33

Issue

9

Document type

Journal article

Publisher

Elsevier

Topic

  • Control Engineering

Keywords

  • Software tools
  • PID control
  • Optimization
  • Measurement noise
  • Control system design

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-2771